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A Voltage-Behind-Reactance Synchronous Machine
Model for the EMTP-Type Solution

Liwei Wang, Student Member, IEEE, and Juri Jatskevich, Member, IEEE

Abstract—A full-order, voltage-behind-reactance synchronous
machine model has recently been proposed in the literature. This
paper extends the voltage-behind-reactance formulation for the
electromagnetic transient program (EMTP)-type solution, in
which the rotor subsystem is expressed in gd coordinates and the
stator subsystem is expressed in abc phase coordinates. The model
interface with the nodal-analysis network solution is non-iterative
and simultaneous. An example of a single-machine, infinite-bus
system shows that the proposed model is more accurate and
efficient than several existing EMTP machine models.

Index Terms—Computational techniques, electromagnetic tran-
sient program (EMTP), phase-domain (PD) model, synchronous
machine, voltage-behind-reactance (VBR) model.

1. INTRODUCTION

HERE have been numerous models proposed to represent
Tsynchronous machines for power-system analysis. For
transient stability studies, reduced-order machine models that
neglect stator transients are commonly used [1]. However,
for electromagnetic transient studies [2], full-order models
are often used, due to their greater accuracy. Depending on
the modeling languages, various machine models have been
developed using the state-variable approach [3]-[5] (wherein
the discretization is performed at the system level by the ODE
solver) and the nodal-analysis approach [6], [7] (wherein the
discretization is done at the component/branch level using a
particular integration rule).

In this paper, synchronous machine models suitable for the
electromagnetic transient program (EMTP) solution are inves-
tigated. The EMTP and its derivative programs are extensively
used by industry and academia as powerful and standard sim-
ulation tools, wherein the classical full-order ¢d synchronous
machine model is available.

In the existing EMTP-type software packages, there are three
commonly used methods for interfacing the gd machine model
with the external network. In the first approach, the machine
is represented internally in gd coordinates, but it is interfaced
with the external network using a Thevenin equivalent circuit in
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phase coordinates. The voltage sources of the Thevenin equiv-
alent contain predicted machine electrical and mechanical vari-
ables, and the equivalent resistances are averaged to incorporate
rotor saliency [8]. A prediction-correction scheme is used for
the machine variables, whereas the network variables are solved
without iterations. The synchronous machine models Type-50 in
MicroTran [9] and Type-59 in DCG/EPRI EMTP [10] fall into
this category.

The second approach is based on the compensation method,
in which the external ac system is represented as a Thevenin
equivalent circuit and is interfaced with the synchronous ma-
chine in gd axes. Linear extrapolation of the rotor speed is used
at the beginning of each time step. To obtain the solution, iter-
ations are applied to both machine’s electrical and mechanical
variables. The compensation method works well as long as the
distributed-parameter transmission lines separate the machines.
When this is not the case, artificial “stub lines” are sometimes
used, complicating the network modeling and reducing its accu-
racy. The universal machine model in the ATP is implemented
using this method [11].

In the third method, used in PSCAD/EMTDC [12], the ma-
chine model is interfaced with the network as a compensation
current source and a special terminating impedance [13]. The
machine model is represented as a Norton current source that
is calculated using the terminal bus voltages from the previous
time step. Therefore, a one-time-step delay exists in this type of
machine model.

The key advantage of the gd model is that it uses a constant
inductance matrix, making it numerically efficient. Also, the
qd model structure makes it possible to incorporate the mag-
netic saturation in a number of convenient ways [2], [11]. How-
ever, the three methods of interfacing the traditional ¢gd machine
model with the EMTP network solution artificially reduce sim-
ulation efficiency by requiring a small time-step At to keep the
interfacing error under certain tolerance. When larger time-steps
are used, the accuracy of the simulation deteriorates. Moreover,
the existing interfacing methods have been shown to cause nu-
merical instability problems [14], [15], which is especially un-
desirable in real-time simulations [16].

As an alternative to the classical ¢d model, some researchers
have turned to the original coupled-circuit machine model for-
mulation, in which the model is expressed in physical variables
and phase coordinates [17]-[21]. In the EMTP community, this
approach is known as the phase-domain (PD) model and may
provide more accurate representation of machine internal phe-
nomena, such as internal machine faults [20]. Because the stator
circuit is directly interfaced to the rest of the network, no predic-
tions and/or iterations of electrical variables are needed and the
numerical stability is improved. However, the existence of time-
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variant self and mutual inductances increases the computational
burden of this model. Present implementations include Type-58
in ATP [21] (which requires re-triangulation at each time step
[22], [23]) and the recently developed VTB model [24].

In order to improve simulation efficiency, a so-called
voltage-behind-reactance (VBR) synchronous machine model
was proposed in [25] for the state-variable approach. In [26],
the VBR synchronous machine model was demonstrated in
the hardware-in-the-loop application. This paper extends the
VBR model formulation for the EMTP-type solution that is the
basis of the real-time power systems simulator at the University
of British Columbia [27]. The simulation studies presented
provide CPU times and an error analysis that demonstrate
the improvement of numerical efficiency and accuracy of the
proposed VBR model over several commonly used models,
including the PD model. The advantages of the proposed VBR
model include the following.

1) Similar to the PD model, the stator circuit is expressed
in phase coordinates using the physical currents as the
independent variables and is directly interfaced with
the external network. A simultaneous EMTP solution is
thereby achieved.

2) The rotor equations are expressed in gd-rotor reference
frame using flux linkages as the independent variables,
which significantly reduces the computational burden
as compared to the PD model. The VBR model is also
shown to have improved numerical accuracy due to
better scaled eigenvalues.

3) The model formulation is very flexible and can be
readily extended to include an arbitrary number of
electrical phases and/or damper windings.

4) Partitioning of the stator and rotor equations provides a
natural decoupling of the time scales. Simulation speed
may be further improved through the multi-rate integra-
tion [28] and latency techniques [29], which we will in-
vestigate in future studies.

II. SYNCHRONOUS MACHINE MODELS

The dynamics of synchronous machines can be represented
by equations of corresponding electrical and mechanical sub-
systems. Without loss of generality, this paper considers a three-
phase synchronous machine with one field winding, fd, and one
damper winding, kd, in the d-axis, and two damper windings,
kql and kg2, in the g-axis. Motor convention is used for all
models, wherein the g-axis of the rotor reference frame is as-
sumed to be 90° leading the d-axis [30]. Throughout this paper,
bold uppercase is used to denote matrices, and bold lowercase is
used to denote vectors. Also, the operator p = d/dt. The equa-
tions for mechanical subsystems are assumed to be the same for
all models considered here, specifically

par = Wr (1)
P

Here, 6,. and w, are the rotor position and the angular electrical
speed; T),, and T, are the mechanical torque and electromag-
netic torque, respectively. For the purpose of consistency and
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further discussion, the relevant machine models in their general
form are briefly reviewed below.

A. Traditional qd Model

To obtain the gd model, the equations of the coupled-circuit
machine model in physical variables are transformed to the rotor
reference frame (Park’s transformation). The resulting voltage
equation, which includes the stator and rotor, may be compactly
expressed as

Vqao = Rigao + pAgao + 1 3)
where

Vgdo = [Vgs Vas vos 0 0 wyg 0]F 4)
iga0 =[igs dds 0s kgt tke2 Gfd ika)’ (5)
u=[wAgs —wrhgs 0 0 0 0 0]F (6)

Aqu = [Aqs )‘ds )‘Os )‘kql )‘kq2 )‘fd Akai ]T (7)

R,
R_[ RT]. ®)

Here, v440 and igqo are the vectors of voltages and currents,
respectively; vyq represents the field winding voltage; u in-
cludes the speed voltage terms; and R is a constant diagonal ma-
trix containing the stator and rotor resistances. The flux linkage
equations may be expressed as

Agao = Lygaoiqao 9)

where

Ld0s
quoz[ 440 (10)

quOs’r‘
quOrs

quOT

Note that the inductance matrix, Lgq0, does not depend on the
rotor position. Finally, the electromagnetic torque is expressed
as

3P
Te = —()\dsiqs -

1 Y

Agsids)-

B. Phase-Domain Model

The general form of the PD synchronous machine model is
the coupled-circuit model, expressed in physical variables and
coordinates. In particular, the voltage equation can be expressed
as

Vabes iabcs Aabcs
=R|. . 12
[ Vqdr ] [ Lgdr ] v [ Agdr } (12
The flux linkages are given as
Aﬂb(’e i(l bes :|
el =L6,) | 13
|: Aqd"’ :| ( ) |: qu"’ ( )
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with the inductance matrix now depending on the position of the
rotor

_ Ls( 1’) Lsr(gr)
L(0,) = [Lrs( ) L, . (14)
The developed electromagnetic torque is
T
1 g 0 iap
T.=- |1 L(#,) |7 . 15
2 |:1qdr :| 86», ( ) |:1qd7‘ ( )

The main advantage of this model for the EMTP solution is
that the stator circuit is directly integrated with the electrical net-
work, thereby avoiding the interfacing and stability problems
common in the qd model. However, the terms dependent on
rotor position in (13)—(15) result in an additional computational
burden and complexity of the final discretized model.

C. Voltage-Behind-Reactance Model

The VBR formulation decouples the synchronous machine
model into stator and rotor subsystems. Since the stator network
is interfaced with the EMTP solution, the stator phase currents
are used as the independent variables. However, the rotor sub-
system is expressed in gd rotor reference frame, with the flux
linkages used as the independent variables. A detailed deriva-
tion of the VBR model can be found in [25]. For completeness,
only the final form suitable for the EMTP solution is given here.
In particular, the stator voltage equation can be expressed as

Vabes = Rsiabcs + p[ gbcs(ar)iabcs] + v:z/bcs (16)
where R, is a constant diagonal matrix representing stator re-

sistances [26], and L/, (6,.) is the so-called subtransient in-

The inductances L, , and L;  are calculated as

. { L1 1 }1
md Lyma  Lifa  Lika

{1 PR B }‘1
Lpg  Likgt  Likg2 ’

The subtransient voltages v/, (t) in (16) are defined as

(22)

(23)

"o
Lmq =

Vibes = [KL(0,)] 7 [v]

vowyo0]” (24)

where

Lygrrat (A = A1)

Ll2kql
L;;lquqg (/\g — /\kq2)
LIqu2

Tkql Tkq?2
+ + L
<Ll2kq1 Ll2kq2>
Ly gmkd (N — Aka)
lekd
Ly aria (Mg — Ara)

2
Llfd

Tfd Tkd
+ + =
<Ll2fd Ll%cd)

" _ ”
Vg =Wr at

"2 -
mq“qs

(25)

"
Lmd

Litq

1 "
Vg = —weAg +

’de

+

"2 -
mdlds

(26)

with

Akq2
l + L//l oq
" Ligqg1 s

"n_grn /\fd + 7 )\kd
d =Lma7— a7
" Lifa ™ Lika

N =, Dkt (27)
(28)

Rotor dynamics are represented by the following equations:

ductance matrix, defined as in (17), shown at the bottom of the PA; = — T()\j — Amq);  J=kql, kq2 (29)
page, where rl?
Ls() = Lis + Lo — Ly cos(+) (18) Y
L, where
L]\,[(') = — 7 — Lb COS(-) (19)
L+ L), Aomg = L1 (Dbt Akaz 31
L, = ‘Ifd (20) mq LAV + Likg2 t2gs (31
Ly d Ly q " < )‘fd )\kd . >
_m m Amd =L | — + + igs | - 32
Ly = 3 @D ¢ Y\ Lifa ' Lika ¢ 32)
L5(29T) Ly (297« - %) Ly (297« + 2?77)
mhes(0r) = | Lar (26, — &) Ls (26, — &) L (26,) 17)
5 L (26,)

Lag (26, + %)

Ls (26, + %)
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Here, \; denotes the rotor flux linkages, and A, and A,,,4 are
the magnetizing flux linkages in ¢d axes, respectively.

The mechanical equations for the VBR model are identical
to (1) and (2). The electromagnetic torque may be calculated as
(30]

3P .
0 ()‘mdzqs -

T. =
4

Amglds)- (33)

III. DISCRETE-TIME MODEL REPRESENTATIONS

In order to obtain numerical solutions of the synchronous ma-
chine model within the EMTP, the implicit trapezoidal rule is
applied to obtain the corresponding difference equations. In par-
ticular, discretizing (1) and (2), the difference equations for the
rotor position and speed are obtained as

0,(t) =0, (t — At) + %(wr () +wo(t — At))  (34)
AtP
wrlt) = wn(t = D) + T (Tu(1) + Telt = A1)
AtP
- 55 Tn (35)

which are common to all models considered here. The dis-
cretized forms of the gd synchronous machine model [8] are
not included in this paper due to space considerations. Instead,
the PD and the proposed VBR models are compared, since
these two models have similar interfaces with the network. In
particular, the general form of these models interfaced into the
external network for the EMTP solution can be represented as

Vabes (t) = Req(t)iabcs (t> + eh(t) (36)

where R, (¢) is the equivalent resistance matrix (which may
need to be inverted) and ey, (¢) is the final history source term.
A. Discrete-Time Phase-Domain Model

Applying the implicit trapezoidal rule with time-step At to
the voltage (12) gives the following difference equation for the
stator voltages of the PD model:

Vabes(t) = (Rs + Aith(t)> iabes (1)

2 .
+A—thr(t)1da(t) +elt) (37)

where

el (t) = <Rs -
2
— g Lo (t = Ab)igar (= A) = Vapes(t = A).

The rotor difference equation can be expressed as

2
_Le _A .(1,)(‘,3 _A
Lt t)>1; (t — At)

(38)

2 -1
iqd’r‘(t) == <R1’ + A—tLT>

X <qur(t) — éLm(t)ia;,m(t) - efi(t)) (39)
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where

(1) = <RT - %L,«> fyan(t — A1)
2
At

Substituting (39) into (37), the PD synchronous machine model
can be finally interfaced into the external network as

Loo(t — At)igpes(t — At) — voar(t — AL).  (40)

Vabes (t) = Rgg(t)iabcs (t) + e]}id(f) (41)
where
2
R2(t) =R, + ELS(t)
A Lo (R AL L () (42)
AtZ Eie T At r rs (
and
(1) = ed(t) + eP(1) (43)
with
epd(t) = iL ) | R+ iL - (v (t) — epd(t))
r At sr r At r qdr rh .
(44)

The electromagnetic torque is calculated in phase variables ac-
cording to (15) or its expended form [30, eq. 5.3-4]. The me-
chanical subsystem is solved using (34) and (35).

B. Discrete-Time Voltage-Behind-Reactance Model

Discretizing the VBR stator voltage (16) using the implicit
trapezoidal rule gives the following equation:

2 .
Vabes(t) = (Rs + ELgbcs (t>> 1abes ()

FVies(t) F el (1) (45)
where
2
e (t) = (Rs = A7 Vees(t = At)) igpes(t — Al)
+Vlalbcs (t - Af) — Vabes (t - At) (46)

To interface the VBR model into the external network, (45)
should be put into form of (36). Therefore, v/, . should be
expressed in terms of i,p.5. This step can be achieved by dis-
cretizing the rotor state equations and solving for the rotor sub-
system output variables. After some algebraic manipulation, the
difference equations for the rotor flux linkages may be expressed

as

Rﬁigg] =E1igs(t) + Ep R:Z;Ei - ﬁm

+ Eqigs(t — At) (47)
Ara) | _ @ Aga(t = At)
|:)\kd(t):| —Flzds(t) + F2 |:Akd(t _ At):|
+ Fl’ids(t — At) + F3’de. (48)
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Here, constant matrices E{, Es, F{, F5, and F3 are due to the
qd transformation and are given in Appendix A. Further, sub-
stituting (47), (48), (27), and (28) into the rotor output (25) and
(26), v;’d may be expressed as

ng(t) = (ki(w) ka(wr) )iqu (t) + hgar (t)-

Here, k;(w,) and ko(w,) are vectors that depend on the rotor
speed wy; hyg, is equivalent history source, including the exci-
tation voltage and the history values of the stator currents and
the rotor flux linkages, respectively. These variables are also de-
fined in Appendix A.

After v;’ , and i,q, are transformed into abc phase coordi-

nates, the subtransient voltages v”/, .. are expressed as

(49)

Viles(t) = K(t)iaves(t) + €207(2) (50)
where
r —1 | ki(wr) ko(wr) Ooxi | g-r
k(0 = ko)t [ ) )
(51)
and
e =iz MO e

Finally, substituting (50) into (45), the VBR model can be inter-
faced into the external network as

Vaves (1) = Ry (H)iaves () + €} (1) (53)
where
vbr 2 "
Req (t) = RS + Kt abcs (t) + K(t) (54)
and
e’ (1) = e’ (1) + ey (1) (55)

Similar to the PD model, the rotor position and speed are
calculated using (34) and (35). However, the electromagnetic
torque, T, is calculated using (33).

C. Model Complexity

The difference equations of the PD and VBR models have
similar forms, since (41)—(43) are analogous to (53)—(55).
However, the computational cost associated with these equa-
tions is substantially different. The number of floating point
operations (flops) required to complete the calculations is often
used as a measure of numerical complexity and/or efficiency
of a given algorithm. Here, we use the definition of a flop as
one addition, subtraction, multiplication, or division of two
floating-point numbers [31]. The number of flops for one
trigonometric function (trig) evaluation (cos or sin) depends
on the floating-point-unit (FPU) processor and/or internal
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TABLE 1
FLOPS AND TRIG FUNCTIONS COUNT PER TIME STEP

PD Model VBR Model
L,(4) flop | trig LI,; pes(6) flop | trig
L, K’

L“’EZ; 33 1 9 ‘-‘m)_l 20 | 9
s [K(8)]
d bi

RES 96 R 76

e/ | 280 | - e 105

iqdr 76 Agdr 46

TJ’d 62 1 Tevbr 4

Total 546 10 Total 241 9

implementation and may cost several flops. After very careful
evaluation of the model equations (taking into account that
many coefficients and terms can be precalculated and stored for
better speed), the number of flops and trigs for the PD and VBR
models are summarized in Table I. The total number of flops
is also roughly divided among the different terms/equations
to better understand where the computational enhancement is
achieved.

As can be seen in Table I, a significant number of flops is
spent on computing the history terms eﬁd and e}"". Because
the VBR model utilizes qd transformation for the rotor part,
most of the terms and/or coefficients in the discretized rotor
(47)—(49) are constant and therefore precalculated outside and
before the major time step loop. At the same time, many of the
terms and/or equations in the PD model contain time-variant
coefficients that must be recalculated due to changing induc-
tances. Another significant saving is achieved in calculating the
electromagnetic torque using (33) instead of (15). The differ-
ence in the total number of flops will further increase to the
benefit of VBR model if one considers a synchronous machine
with larger number of damper windings (e.g., 6 in [25]). This
can be clearly observed as the dimensions of matrices L, (,.),
L,4(6,), and L, will increase for the PD model, which further
increases the computational costs. However, the dimensions of
L”, (6,),K7(8,), [K"(8,)] " donot change, and there will be

abces

less of an increase in the number of flops for the VBR model.

IV. INTERFACE PROCEDURE

The method used for interfacing the VBR synchronous ma-
chine model is similar to that of the PD model. In particular, the
machine is connected to the external network as a three-phase
Thevenin equivalent circuit, as shown in Fig. 1. Without loss
of generality, the machine windings are assumed to be Y-con-
nected, with the neutral grounded, although any other connec-
tion of windings is possible. The sequence of calculation steps in
interfacing the VBR model is briefly described here, assuming
that the solution at time-step ¢ — At is known and that the solu-
tion at ¢ is to be found.

1) Predict the mechanical variables: As the mechanical
equations are nonlinear, the exact and simultaneous so-
lution of the mechanical and electrical variables, in gen-
eral, would require iterations. However, since the me-
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Fig. 1. Thevenin equivalent circuit of the proposed VBR model.

chanical variables change relatively slowly compared to
the electrical variables, the linear extrapolation of §,. and
w,- used in [2] and [20] is also applied here as

0-(t) =260,.(t — At) — 0,.(t — 2At)
wr(t) =2w,.(t — At) — w,.(t — 2At).

(56)
(57)

2) Form the Thevenin equivalent circuit: (54) and (55) are
evaluated to assemble the Thevenin equivalent circuit of
the synchronous machine.

3) Solve the network equations: The network conductance
matrix G is triangularized, and the network variables are
solved.

4) Update machine’s stator and rotor variables: Stator cur-
rents and rotor flux linkages are calculated according
to (53), (47), and (48). Subtransient voltages v/, .. and
equivalent history terms are also calculated by (50), (46),
and (52).

5) Update the machine’s mechanical part: The electromag-
netic torque 7, is calculated using (33). Then, the rotor
displacement 6,. and speed w, are recalculated using
(34) and (35).

V. COMPUTER STUDIES

A single-machine, infinite-bus case system is assumed here
to compare the different models. The machine parameters ob-
tained from [30] are summarized in Appendix B. To validate the
proposed VBR model, the case system has been implemented
using various simulation packages, including MicroTran, ATP,
and MATLAB/Simulink. In the transient study considered here,
the machine initially operates in an idle steady-state mode with
load torque 1}, = 0, and the nominal excitation is kept con-
stant. At ¢ = 0, a symmetric three-phase fault is applied at the
machine terminals. The dynamic responses produced by various
models using different time steps are plotted in Figs. 2 and 3.
The studies of unbalance operations are discussed in [32].

A. Model Verification

Fig. 2 depicts the fault transient observed in the field cur-
rent 474, a-phase current i,,, and the electromagnetic torque
T.. Other variables are not shown due to space limitations.
Since the analytical solution is not available, a reference
solution was obtained using the gd model implemented in
MATLAB/Simulink (state-variable approach) and solved with
the Runge—Kutta fourth-order method with an integration
time-step At = 1 us. This solution is considered a trustworthy
reference because it was obtained with a high-order method
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Fig. 2. Simulation results with time-step of 50 us.
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Fig. 3. Simulation results with time-step of 1 ms.

using a very small time-step. The same transient study was re-
produced by different models using the time-step At = 50 us.
The corresponding results are superimposed with the reference
solutions in Fig. 2, wherein it is shown that the responses
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Fig. 4. Detailed view of the portion of ¢, with the time-step of 1 ms.

predicted by the above-mentioned models are visibly indis-
tinguishable from the reference solution and each other. This
result indicates that the gd model, the PD model, and the VBR
model are all equivalent despite the different simulation lan-
guages and integration methods used. This study also validates
the proposed VBR model.

B. Numerical Accuracy

Although the simulation results obtained by different models
are all convergent to the reference solution when the step size
is small, error between the solutions still exists. To study the
error behavior and stability of different models, the same sim-
ulation study was run with different integration time steps. An
example study performed with a larger time-step (At = 1 ms)
is shown in Fig. 3, wherein the general trend of error produced
by different models can be observed. Here, and in other figures,
the legend MT denotes the results obtained using MicroTran.
Studies with other time-steps are not included due to space lim-
itations. Fig. 3 shows that at such a large time-step, the Micro-
Tran’s Type-50 machine model (see dotted-line MT) has a large
error, while the ATP Type-59 model was no longer convergent.
This behavior is mainly due to the interface of the gd model with
the external network, which quickly deteriorates the simulation
accuracy as the time-step increases. At the same time, the PD
and VBR models remain stable at this large At and still pro-
duce results reasonably close to the reference solution. To see
the details among the simulation results produced by the stable
models, a fragment of the peak of current 7, is shown in Fig. 4.
As can be seen, the solution points obtained by the VBR model
are closer to the reference solution than the results of either the
PD model or the MT model.

To evaluate the accuracy of different numerical solutions, a
relative error between the reference solution trajectory and a
given numerical solution may be considered. The relative error
is calculated here using the 2-norm [33] as

[If = £ll2

———= x 100
1£]l2

%error =

(58)

1545

18
16 e R P
(21 R R
(R R — ____________

10 _ 2 ..... ............. _.‘_.‘_-‘.” ..................

Relative errors (%)

- See Fig. 6

e e ac s

1050100 200 500
Time steps (us)
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Fig. 6. Comparison of time-steps and numerical errors in 7.

where f denotes the reference solution and f is the numerical
solution. Without loss of generality, the relative error was cal-
culated for one variable only, stator current ¢, since the error of
the other variables is similar. The error was calculated for dif-
ferent time-step sizes. The results for the different models are
shown in Figs. 5 and 6.

As can be seen in Fig. 5, the PD and the VBR models are all
noticeably more accurate than the gd models of MicroTran and
ATP. In particular, when the time-step At is larger than 0.2 ms,
the MicroTran’s gd model will have an error exceeding 4%, and
the ATP’s gd model is no longer convergent. Although the ¢d
model implemented in MicroTran appears to be stable even after
At = 0.2 ms, the large error observed in other variables (see
Fig. 3, iyq and T,) supports the conclusion that the traditional
qd models should preferably be used with small step size and
with caution.



1546

TABLE II
COMPARISON OF CPU TIMES
CPU times PD Model VBR Model
0.2s study 0.031s 0.015s
Per time-step 7.75 us 3.75us

C. Model Efficiency

The proposed VBR and PD models were both implemented
in standard C language and compiled for the purpose of bench-
mark comparisons. The compiled models were executed on a
personal computer (PC) with a Pentium 4, 2.66-GHz processor
and 512M RAM. The CPU times required by the two models for
the 0.2-s case study with the integration time-step At = 50 us
are summarized in Table II. It can be seen that although both
models can realize a faster than real-time simulation speed, the
proposed VBR model achieves a roughly 200% improvement of
simulation speed over the PD model. This result is very much
consistent with the flops count provided in Table I for the two
models.

To compare the overall simulation efficiency, some common
error tolerance should be assumed. Herein, a relative error toler-
ance of 0.25% is considered. To achieve this tolerance, Micro-
Tran’s and ATP’s gd models require a time-step At = 10 us,
and the PD model needs a time-step At = 150 us, as shown in
Fig. 6. However, the proposed VBR model may use the time-
step as large as 500 us, which outperforms the PD model by
3.3 times and the traditional ¢d models by about 50 times. Alto-
gether, taking into account the CPU times in Table II, the VBR
model demonstrates a 660% improvement over the PD model
for the same relative tolerance of 0.25%.

VI. ERROR ANALYSIS

It is important to point out that the standard gd model, the
PD model, and the VBR model are all equivalent for contin-
uous-time analysis since no approximation is made when these
models are algebraically derived from each other. However,
when these models are discretized using a specific integration
rule and interfaced into the EMTP network solution, their
numerical properties are different.

As shown in Figs. 5 and 6, the ¢qd models (MT and ATP)
quickly lose accuracy compared to the PD and the VBR models.
Such behavior is due to the interface of the gd models and the
prediction of fast electrical variables such as stator currents and
speed voltages [2].

The accuracy of PD and VBR models should be examined in
more detail. As was shown in [25], the choice of independent
variables and the structure of the model change the system’s
eigenvalues, which are linked to the accuracy and performance
of different numerical solvers.

To achieve the EMTP solution, the PD and VBR models are
discretized using the same implicit trapezoidal integration rule
as described in Section III. To further compare the numerical
property of these two models, the corresponding difference
equations should be analyzed. Since the trapezoidal rule is
a one-step integration scheme, the model equations may be
expressed in the form of a one-step update formula as [33]

X, = P(AL t, X, —1)Xn—1 + T(AL, 2). (59)

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 21, NO. 4, NOVEMBER 2006

TABLE III
EIGENVALUES OF MACHINE MODELS

Continuous Time Discrete Time

PD VBR PD VBR
954.2 32.0+j26.4 0.395 0.945-j0.028
890.3 32.0-j26.4 0.418 0.945+j0.028

-4.2 -0.88 0.976 0.994
-6.00 -5.39 0.994 0.995
-24.2 -5.96 0.996 0.999
-904.6 | -57.3+j30.6 | 2.358 1.031-j0.027
-968.3 -57.3-j30.6 2.498 1.031+j0.027

Here, the vector x contains combined independent variables
(currents and/or flux linkages); f(At, t) represents the forcing
function that includes the terminal voltages, V4p¢s, and the ex-
citation voltage, v¢q. Thereafter, the numerical behavior and
the local error propagation can be related to the eigenvalues
of the update matrix ®(At, ¢, x,_1), as this matrix directly re-
lates the present step solution (error) to the next step solution
(error). After extensive algebraic manipulations with the equa-
tions of Section III, both PD and VBR models can be put into the

form of (59). Only the final update matrices ®7¢ (At7 t, xﬁ‘L)
and @vb7 (At,t./ xvbr ) are given in Appendix A. The corre-

n—1
sponding discrete-time eigenvalues are calculated for At =
1 ms and summarized in Table III. For consistency, the contin-
uous-time eigenvalues were also calculated using the method-
ology described in [25] and are included as well.

It is interesting to note that although both PD and VBR
models have rotor-position-dependent terms, the respective
systems have time-invariant eigenvalues due to the machine
symmetry. Another important observation is that both models,
when expressed in continuous time, have some eigenvalues
with positive real parts. Contrary to the linear time-invariant
systems, positive eigenvalues do not imply instability of the
time-varying systems [34]. Although it is preferable to have
eigenvalues with negative real part, the existence of positive
eigenvalues may increase the propagation of local errors when
a particular numerical solution scheme is used [35]. In this
regard, the positive eigenvalues of the VBR model are much
smaller than those of the PD model, which indicates a poten-
tially better numerical conditioning of the VBR model.

When the models are discretized, the eigenvalues of the cor-
responding difference equation (59) should be compared against
the unit circle on the complex plane. Here, by analogy with con-
tinuous-time systems, the eigenvalues outside of the unit circle
do not imply the system’s instability, because both models are
time-varying. However, for numerical considerations, it is de-
sirable to have the eigenvalues inside the unit circle (or closer
to the origin). In this regard, the magnitude of the largest eigen-
value of the VBR model (1.031) is roughly two times smaller
than the largest eigenvalue of the PD model (2.498). This ob-
servation again indicates a better numerical conditioning of the
VBR model and is completely consistent with the relative error
results shown in Figs. 5 and 6.

VII. DISCUSSION OF NETWORK SOLUTION

Although the focus of this paper is the VBR synchronous ma-
chine model, it is also of interest and importance to develop an
efficient network solution approach to integrate the VBR ma-
chine model in EMTP-type programs. Similar to the PD model,
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the VBR machine model introduces time-varying elements in
the network conductance matrix, which may lead to an increase
of the execution time if the entire network conductance ma-
trix is re-factorized at each time step (see step 3, Section IV).
Some case studies presented in [14] compare the calculation
times and the number of triangulations when using Type-58 (PD
model) and Type-59 (¢d model) synchronous machine models,
respectively. For a 190-bus three-generator system, the ratio of
308.3/70.1 (about 4.4 times) of increased calculation time due
to re-triangulation was reported [14, Table IJ.

The impact of time-varying elements on the efficiency of
EMTP solution depends on the relative proportion of machines
verses other components and the overall system size [36]. If
there are only one or a few synchronous machines in the net-
work, the extra computation effort can be reduced by using the
compensation method [2]. To get an idea about the increase in
execution time with the compensation method, the IEEE First
Benchmark Model for SSR [37] was considered, wherein an
increase by about 15% per-time-step was observed. Another
method is to place the nodes with synchronous machines as the
last nodes in the nodal equations and triangularize first the upper
part of the conductance matrix before the time-step loop starts.
That will produce a small lower sub-matrix [38, Fig. 7], which
can then be modified with the time-varying values and solved at
each time step to minimize computational overhead of the entire
system. The use of advanced factorization techniques [38], [39]
will become particularly important for larger networks. On the
positive side, the solution obtained by the VBR model using the
same time step will be more accurate, which may often justify
the extra computational effort.
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A more detailed analysis of the impact of using the VBR or
PD models may be carried out using several typical systems
(perhaps at least two—one with small proportion on machines
and another with many machines). When conducting such
studies, in addition to comparing the CPU cost per-time-step,
one should also consider that both PD and VBR models permit
much larger time-step and/or better accuracy (see Fig. 6), which
is an advantage that was not utilized in [14] and should be fully
exploited. Further investigation into this matter is of definite
interest and significance that may be properly addressed in a
dedicated publication.

VIII. CONCLUSION

This paper presented a VBR synchronous machine model
for the nodal analysis method and EMTP-type programs. The
VBR model interface with the electric network is non-itera-
tive, and simultaneous solution of the machine variables and the
network variables is achieved similar to the known PD model.
Case studies of a single-machine, infinite-bus system demon-
strate that the proposed model has computational advantages
over the existing EMTP machine models.
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